EconPapers    
Economics at your fingertips  
 

Impact-induced sublimation drives volatile depletion in carbonaceous meteorites

Zheng-Yu Long (), Frederic Moynier (), Tim F. J. Bögels, Linru Fang, Razvan Caracas, Marine Paquet, Fred Jourdan, Tu-Han Luu, Dimitri Rigoussen, Kun-Feng Qiu, Jun Deng and James M. D. Day
Additional contact information
Zheng-Yu Long: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Frederic Moynier: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Tim F. J. Bögels: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Linru Fang: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Razvan Caracas: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Marine Paquet: Université de Lorraine, CNRS, CRPG
Fred Jourdan: Curtin University
Tu-Han Luu: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Dimitri Rigoussen: Université Paris Cité, Institut de Physique du Globe de Paris, CNRS
Kun-Feng Qiu: China University of Geosciences
Jun Deng: China University of Geosciences
James M. D. Day: University of California San Diego

Nature Communications, 2025, vol. 16, issue 1, 1-8

Abstract: Abstract Carbonaceous chondrites are amongst the most chemically primitive solid materials in the Solar System, yet many are depleted in moderately volatile elements. Here, we report enrichments in heavier zinc isotopes in heated carbonaceous chondrites compared to the typical ranges for chondritic meteorites. Our results indicate that impact-driven thermal metamorphism under low-pressure conditions led to partial sublimation of zinc. First-principles calculations support that zinc escapes from solids in the absence of melting, consistent with shock heating and rapid outgassing. The resulting solid residue is strongly enriched in heavier Zn isotopes with minimal recondensation. These findings link extreme isotopic signatures to collisional processing, revealing that asteroid-scale impacts can drive volatile loss from undifferentiated asteroids. These carbonaceous chondrites provide the first unequivocal evidence for purely kinetic Zn isotope fractionation during volatilization. Impact-induced volatilization drives volatile depletion in asteroidal parent bodies, with implications for the delivery and distribution of volatiles in early planetary systems.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-61115-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61115-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-61115-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-05
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61115-3