Solvent-free thermoplastic foaming for superelastic graphene monoliths
Zeshen Li,
Xiaotong Li,
Kai Pang (),
Kaiwen Li,
Yue Gao,
Chengqi Zhang,
Jiahao Lu,
Yingjun Liu,
Zhen Xu () and
Chao Gao ()
Additional contact information
Zeshen Li: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Xiaotong Li: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Kai Pang: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Kaiwen Li: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Yue Gao: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Chengqi Zhang: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Jiahao Lu: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Yingjun Liu: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Zhen Xu: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Chao Gao: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University
Nature Communications, 2025, vol. 16, issue 1, 1-9
Abstract:
Abstract Graphene monoliths with high porosity inherit extraordinary properties of graphene and establish a versatile platform to integrate diverse materials for multifunctional applications. To date, many methods have been invented to prepare graphene monoliths, including freeze-drying and templating, but these predominantly rely on fluid-based process. Direct thermoplastic foaming for graphene monoliths, as seen in the polymer industry, remains undeveloped. Here, we demonstrate a direct thermoplastic foaming strategy of a graphene monolith with high elasticity and multifunctionality. The intercalation of polymers enables the thermal plasticity of graphene oxide complex solids and allows precise control of the cellular structure of the graphene monolith. The direct thermoplastic foaming method is applicable to graphene monolith bulks, 3D-printed structures, and other 2D-nanosheets monoliths. This approach provides a facile, nontoxic, rapid and low-cost route for the industrial production of monoliths comprising graphene and various nanomaterials.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61123-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61123-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61123-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().