EconPapers    
Economics at your fingertips  
 

Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis

Alvaro Seijas-Da Silva, Adrian Hartert, Víctor Oestreicher, Jorge Romero, Camilo Jaramillo-Hernández, Luuk J. J. Muris, Grégoire Thorez, Bruno J. C. Vieira, Guillaume Ducourthial, Alice Fiocco, Sébastien Legendre, Cristián Huck-Iriart, Martín Mizrahi, Diego López-Alcalá, Anna T. S. Freiberg, Karl J. J. Mayrhofer, João C. Waerenborgh, José J. Baldoví, Serhiy Cherevko, Maria Varela, Simon Thiele, Vicent Lloret and Gonzalo Abellán ()
Additional contact information
Alvaro Seijas-Da Silva: Universitat de València
Adrian Hartert: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Víctor Oestreicher: Universitat de València
Jorge Romero: Universitat de València
Camilo Jaramillo-Hernández: Universitat de València
Luuk J. J. Muris: Universitat de València
Grégoire Thorez: Universitat de València
Bruno J. C. Vieira: Universidade de Lisboa
Guillaume Ducourthial: Passage Jobin Yvon
Alice Fiocco: Passage Jobin Yvon
Sébastien Legendre: Passage Jobin Yvon
Cristián Huck-Iriart: San Martín
Martín Mizrahi: Facultad de Ciencias Exactas. Universidad Nacional de La Plata, CCT La Plata- CONICET. Diagonal 113 y 64
Diego López-Alcalá: Universitat de València
Anna T. S. Freiberg: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Karl J. J. Mayrhofer: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
João C. Waerenborgh: Universidade de Lisboa
José J. Baldoví: Universitat de València
Serhiy Cherevko: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Maria Varela: Universidad Complutense de Madrid (UCM)
Simon Thiele: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Vicent Lloret: Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Gonzalo Abellán: Universitat de València

Nature Communications, 2025, vol. 16, issue 1, 1-17

Abstract: Abstract The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts—particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-61356-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-61356-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-05
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61356-2