Prioritizing perturbation-responsive gene patterns using interpretable deep learning
Yan Cui and
Zhiyuan Yuan ()
Additional contact information
Yan Cui: Fudan University
Zhiyuan Yuan: Fudan University
Nature Communications, 2025, vol. 16, issue 1, 1-19
Abstract:
Abstract Spatially resolved transcriptomics enables mapping of multiplexed gene expression within tissue contexts. While existing methods prioritize spatially variable genes within a single slice, few address identifying genes with differential spatial expression patterns (DSEPs) across multiple conditions—an critical need for complex experimental designs. Challenges include modeling cross-slice spatial variation, scalability to large datasets, and disentangling inter-slice heterogeneity. We introduce DSEP gene prioritization as a new analytical task and present River, an interpretable deep learning framework that identifies genes exhibiting condition-relevant spatial changes. River features a two-branch predictive architecture and a post hoc attribution strategy to rank genes (or other features) by their contribution to condition differences. Its spatially-informed modeling ensures scalability to large spatial datasets, and we further decouple spatial and non-spatial components to enhance interpretability. We evaluate River on simulations and apply it to diverse biological contexts, including embryogenesis, diabetes-affected spermatogenesis, and lupus-associated splenic changes. In triple-negative breast cancer, River prioritizes survival-associated spatial patterns that generalize across patients. River is distribution-agnostic and compatible with diverse spatial data types, offering a flexible and scalable solution for analyzing tissue-wide expression dynamics across multiple biological conditions.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61476-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61476-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61476-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().