Immunodiagnostic plasma amino acid residue biomarkers detect cancer early and predict treatment response
Cong Tang (),
Patrícia Corredeira,
Sandra Casimiro,
Qi Shi,
Qiwei Han,
Wesley Sukdao,
Ana Cavaco,
Cecília Melo-Alvim,
Carolina Ochôa Matos,
Catarina Abreu,
Steven Walsh,
Gonçalo Nogueira-Costa,
Leonor Ribeiro,
Rita Sousa,
Ana Lorena Barradas,
João Eurico Fonseca,
Luís Costa (),
Emma V. Yates () and
Gonçalo J. L. Bernardes ()
Additional contact information
Cong Tang: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Patrícia Corredeira: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Sandra Casimiro: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Qi Shi: R. da Holanda 1
Qiwei Han: R. da Holanda 1
Wesley Sukdao: Babraham Research Campus
Ana Cavaco: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Cecília Melo-Alvim: Unidade Local de Saúde de Santa Maria
Carolina Ochôa Matos: ULS de Santa Maria, Centro Académico de Medicina de Lisboa
Catarina Abreu: Unidade Local de Saúde de Santa Maria
Steven Walsh: Babraham Research Campus
Gonçalo Nogueira-Costa: Unidade Local de Saúde de Santa Maria
Leonor Ribeiro: Unidade Local de Saúde de Santa Maria
Rita Sousa: Unidade Local de Saúde de Santa Maria
Ana Lorena Barradas: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
João Eurico Fonseca: ULS de Santa Maria, Centro Académico de Medicina de Lisboa
Luís Costa: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Emma V. Yates: Babraham Research Campus
Gonçalo J. L. Bernardes: GIMM - Gulbenkian Institute for Molecular Medicine; Avenida Prof. Egas Moniz
Nature Communications, 2025, vol. 16, issue 1, 1-14
Abstract:
Abstract The immune response to tumour development is frequently targeted with therapeutics but remains largely unexplored in diagnostics, despite being stronger for early-stage tumours. We present an immunodiagnostic platform to detect this. We identify a panel of amino acid residue biomarkers providing a signature of cancer-specific immune activation associated with tumour development and distinct from autoimmune and infectious diseases, measurable optically in neat blood plasma, and validate within N = 170 participants. By measuring the total concentrations of cysteine, free cysteine, lysine, tryptophan, and tyrosine protein-incorporated biomarkers and analyzing the results with supervised machine learning, we identify 78% of cancers with 0% false positive rate (N = 97) with an AUROC of 0.95. The cancer, healthy, and autoimmune/infectious biomarker pattern are statistically significantly different (p
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61685-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61685-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61685-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().