EconPapers    
Economics at your fingertips  
 

Hydrate-melt electrolyte design for aqueous aluminium-bromine batteries with enhanced energy-power merits

Xingyuan Chu, Jingwei Du, Jiaxu Zhang, Xiaodong Li, Xiaohui Liu, Yongkang Wang, Johannes Hunger, Ahiud Morag, Jinxin Liu, Quanquan Guo, Dongqi Li, Yu Han, Mischa Bonn, Xinliang Feng () and Minghao Yu ()
Additional contact information
Xingyuan Chu: Technische Universität Dresden
Jingwei Du: Technische Universität Dresden
Jiaxu Zhang: Technische Universität Dresden
Xiaodong Li: Technische Universität Dresden
Xiaohui Liu: Technische Universität Dresden
Yongkang Wang: Max Planck Institute for Polymer Research
Johannes Hunger: Max Planck Institute for Polymer Research
Ahiud Morag: Technische Universität Dresden
Jinxin Liu: Max Planck Institute of Microstructure Physics
Quanquan Guo: Technische Universität Dresden
Dongqi Li: Technische Universität Dresden
Yu Han: Max Planck Institute for Polymer Research
Mischa Bonn: Max Planck Institute for Polymer Research
Xinliang Feng: Technische Universität Dresden
Minghao Yu: Technische Universität Dresden

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract Aluminium-based aqueous batteries hold promises for next-generation sustainable and large-scale energy storage due to the favorable metrics of Al and water-based electrolytes. However, the performance of current aluminium-based aqueous batteries falls significantly below theoretical expectations, with a critical bottleneck of realizing cathodes with high areal capacities. Herein, we present a hydrate-melt electrolyte design utilizing cost-effective AlCl3 and organic halide salts, which enables the demonstration of aqueous Al-Br batteries with enhanced energy-power characteristics. The optimal electrolyte features suppressed water activity and loosely bound halogen anions, attributed to its unique electrolyte structure, where the majority of water molecules engage in robust ion solvation (>98% as suggested by simulations) and halogen anions reside in the outer solvation sheath of cations. These distinctive features ensure good compatibility of the electrolyte with the reversible Br−/Br0/Br+ conversion, enabling cathodes with a high areal capacity of 5 mAh cm−2. Besides, the electrolyte allows for Zn-Al alloying/de-alloying with minimal polarization (around 100 mV at 5 mA cm−2) and a smooth alloy surface. The assembled Al-Br cell delivers an energy density (267 Wh L−1, based on the volume of anode, cathode and separator) comparable to commercial Li-ion batteries and a substantial power density (1069 W L−1) approaching electrochemical capacitors.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-61740-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61740-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-61740-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-11
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61740-y