EconPapers    
Economics at your fingertips  
 

Evidence for the stabilization of FeN4 sites by Pt particles during acidic oxygen reduction

Nicolas A. Ishiki, Keyla Teixeira Santos, Nicolas Bibent, Kavita Kumar, Ina Reichmann, Yu-Ping Ku, Tristan Asset, Laetitia Dubau, Michel Mermoux, Hongxin Ge, Sandrine Berthon-Fabry, Viktoriia A. Saveleva, Vinod K. Paidi, Pieter Glatzel, Andrea Zitolo, Tzonka Mineva, Hazar Guesmi, Serhiy Cherevko, Edson A. Ticianelli, Frédéric Maillard () and Frédéric Jaouen ()
Additional contact information
Nicolas A. Ishiki: LEPMI
Keyla Teixeira Santos: LEPMI
Nicolas Bibent: 1919 route de Mende
Kavita Kumar: LEPMI
Ina Reichmann: Cauerstraße 1
Yu-Ping Ku: Cauerstraße 1
Tristan Asset: 1919 route de Mende
Laetitia Dubau: LEPMI
Michel Mermoux: LEPMI
Hongxin Ge: CS 10207 rue Claude Daunesse
Sandrine Berthon-Fabry: CS 10207 rue Claude Daunesse
Viktoriia A. Saveleva: 71 Avenue des Martyrs
Vinod K. Paidi: 71 Avenue des Martyrs
Pieter Glatzel: 71 Avenue des Martyrs
Andrea Zitolo: BP 48 Saint Aubin
Tzonka Mineva: 1919 route de Mende
Hazar Guesmi: 1919 route de Mende
Serhiy Cherevko: Cauerstraße 1
Edson A. Ticianelli: CP 780
Frédéric Maillard: LEPMI
Frédéric Jaouen: 1919 route de Mende

Nature Communications, 2025, vol. 16, issue 1, 1-15

Abstract: Abstract While Fe–N–C materials have shown promising initial oxygen reduction reaction (ORR) activity, they lack durability in acidic medium. Key degradation mechanisms include FeN4 site demetallation and deactivation by reactive oxygen species. Here we show for mainstream Fe–N–Cs that adding 1 wt.% Pt nanoparticles via a soft polyol method results in well-defined and stable Pt/Fe–N–C hybrids. The Pt addition strongly reduces the H2O2 production and Fe leaching rate during ORR, while post mortem Mössbauer spectroscopy reveals that the highly active but unstable Fe(III)N4 site is partially stabilized. The similar H2O2 electroreduction activity of Pt/Fe–N–C and Fe–N–C and other analyses point toward a long-distance electronic effect of Pt nanoparticles in stabilizing FeN4 sites. Computational chemistry reveals that spin polarization of distant Pt atoms mitigates the structural changes of FeN4 sites upon adsorption of oxygenated species atop Fe, especially in high-spin state.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-61806-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61806-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-61806-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-12
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61806-x