Establishing a pure antiferroelectric PbZrO3 phase through tensile epitaxial strain
Krina Parmar,
Pauline Dufour,
Emma Texier,
Cécile Carrétéro,
Xiaoyan Li,
Florian Godel,
Jirka Hlinka,
Brahim Dkhil,
Daniel Sando,
Hugo Aramberri,
Jorge Íñiguez-González,
Stéphane Fusil,
Alexandre Gloter,
Thomas Maroutian and
Vincent Garcia ()
Additional contact information
Krina Parmar: Université Paris-Saclay
Pauline Dufour: Université Paris-Saclay
Emma Texier: Université Paris-Saclay
Cécile Carrétéro: Université Paris-Saclay
Xiaoyan Li: Université Paris-Saclay
Florian Godel: Université Paris-Saclay
Jirka Hlinka: Na Slovance 2
Brahim Dkhil: Laboratoire SPMS
Daniel Sando: University of Canterbury
Hugo Aramberri: Avenue des Hauts-Fourneaux 5
Jorge Íñiguez-González: Avenue des Hauts-Fourneaux 5
Stéphane Fusil: Université Paris-Saclay
Alexandre Gloter: Université Paris-Saclay
Thomas Maroutian: Université Paris-Saclay
Vincent Garcia: Université Paris-Saclay
Nature Communications, 2025, vol. 16, issue 1, 1-7
Abstract:
Abstract The nature of lead zirconate, the historical antiferroelectric material, has recently been challenged. In PbZrO3 epitaxial films, thickness reduction engenders competition among antiferroelectric, ferrielectric and ferroelectric phases. All studies so far on PbZrO3 films have utilized commercially-available oxide single crystals with large compressive lattice mismatch, causing the films to undergo strain relaxation. First-principles calculations have predicted that tensile strain can stabilize antiferroelectricity down to the nanometre scale. Here we use tensile strain imposed by artificial substrates of LaLuO3 to stabilize a pure antiferroelectric phase in PbZrO3. Sharp double hysteresis loops of polarization vs electric field show zero remanent polarization, and polar displacement maps reveal the characteristic up-up-down-down antipolar pattern down to 9 nanometre film thicknesses. Moreover, the electron beam can move this antipolar pattern through the nucleation and annihilation of translational boundaries. These results highlight the critical role of coherent epitaxial strain in the phase stability of PbZrO3.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61867-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61867-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61867-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().