Direct atomic-scale investigation of the coarsening mechanisms of exsolved catalytic Ni nanoparticles
Dylan Jennings (),
Moritz L. Weber (),
Ansgar Meise,
Tobias Binninger,
Conor J. Price,
Moritz Kindelmann,
Ivar Reimanis,
Hiroaki Matsumoto,
Pengfei Cao,
Regina Dittmann,
Piotr M. Kowalski,
Marc Heggen,
Olivier Guillon,
Joachim Mayer,
Felix Gunkel () and
Wolfgang Rheinheimer ()
Additional contact information
Dylan Jennings: Forschungszentrum Jülich GmbH
Moritz L. Weber: Forschungszentrum Jülich GmbH
Ansgar Meise: Forschungszentrum Jülich GmbH
Tobias Binninger: Forschungszentrum Jülich GmbH
Conor J. Price: Forschungszentrum Jülich GmbH
Moritz Kindelmann: Forschungszentrum Jülich GmbH
Ivar Reimanis: Colorado School of Mines
Hiroaki Matsumoto: Core Technology & Solution Business Group
Pengfei Cao: Forschungszentrum Jülich GmbH
Regina Dittmann: Forschungszentrum Jülich GmbH
Piotr M. Kowalski: Forschungszentrum Jülich GmbH
Marc Heggen: Forschungszentrum Jülich GmbH
Olivier Guillon: Forschungszentrum Jülich GmbH
Joachim Mayer: Forschungszentrum Jülich GmbH
Felix Gunkel: Forschungszentrum Jülich GmbH
Wolfgang Rheinheimer: University of Stuttgart
Nature Communications, 2025, vol. 16, issue 1, 1-12
Abstract:
Abstract Exsolution-active catalysts allow for the formation of highly active metallic nanoparticles, yet recent work has shown that their long-term thermal stability remains a challenge. In this work, the dynamics of exsolved Ni nanoparticles are probed in-situ with atomically resolved secondary electron imaging with environmental scanning transmission electron microscopy. Pre-characterization shows embedded NiOx nanostructures within the parent oxide. Subsequent in-situ exsolution demonstrates that two populations of exsolved particles form with distinct metal-support interactions and coarsening behaviors. Nanoparticles which precipitate above embedded nanostructures are observed to be more stable, and are prevented from migrating on the surface of the support. Nanoparticle migration which fits random-walk kinetics is observed, and particle behavior is shown to be analogous to a classical wetting model. Additionally, DFT calculations indicate that particle motion is facilitated by the support oxide. Ostwald ripening processes are visualized simultaneously to migration, including particle redissolution and particle ripening.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61971-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61971-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61971-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().