Impairing the interaction between Erg11 and cytochrome P450 reductase Ncp1 enhances azoles’ antifungal activities
Wanqian Li,
Malcolm Whiteway,
Sijin Hang,
Jinhua Yu,
Hui Lu () and
Yuanying Jiang ()
Additional contact information
Wanqian Li: Tongji University
Malcolm Whiteway: Concordia University
Sijin Hang: Tongji University
Jinhua Yu: Tongji University
Hui Lu: Tongji University
Yuanying Jiang: Tongji University
Nature Communications, 2025, vol. 16, issue 1, 1-18
Abstract:
Abstract Azole effectiveness against candidiasis can be compromised by Candida albicans resistance and tolerance, and unfortunately, few clinically useful compounds can enhance azole antifungal activities. We find that the amino acids V234, F235 and L238 of Erg11 are critical for its interaction with Ncp1, and the Ncp1-Erg11 association is important in azole response. Ellipticine and its analog phiKan 083 block this Erg11-Ncp1 interaction by targeting Ncp1, and boost antifungal effects of fluconazole in vitro and in vivo. A series of steps influencing this process—an initial elevation in reactive oxygen species, leading to protein oxidation and misfolding in the endoplasmic reticulum (ER) that causes ER stress. This stress leads to Ca2+ release from the ER, mitochondrial Ca2+ accumulation and dysfunction, increased ROS production, and apoptosis of C. albicans cells. Overall, disrupting the Erg11-Ncp1 interaction in C. albicans can serve as a useful approach to enhancing the antifungal properties of azoles.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-62131-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62131-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-62131-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().