EconPapers    
Economics at your fingertips  
 

Wood decay under anoxia by the brown-rot fungus Fomitopsis pinicola

Robert Röllig, Annie Lebreton, Lucia Grenga, Rosalie Cresswell, Signe Lett, Theodora Tryfona, David Navarro, Julien Lambert, Sacha Grisel, Isabelle Gimbert, Helle Jakobe Martens, Guylaine Miotello, Xiaolan Yu, Elodie Drula, Marie-Noelle Rosso, Lionel Tarrago, Bernard Henrissat, Katja Johansen, Ray Dupree, Jean Armengaud, Paul Dupree and Jean-Guy Berrin ()
Additional contact information
Robert Röllig: BBF, Biodiversité et Biotechnologie Fongiques
Annie Lebreton: BBF, Biodiversité et Biotechnologie Fongiques
Lucia Grenga: SPI
Rosalie Cresswell: University of Warwick
Signe Lett: University of Copenhagen
Theodora Tryfona: University of Cambridge
David Navarro: BBF, Biodiversité et Biotechnologie Fongiques
Julien Lambert: BBF, Biodiversité et Biotechnologie Fongiques
Sacha Grisel: BBF, Biodiversité et Biotechnologie Fongiques
Isabelle Gimbert: BBF, Biodiversité et Biotechnologie Fongiques
Helle Jakobe Martens: University of Copenhagen
Guylaine Miotello: SPI
Xiaolan Yu: University of Cambridge
Elodie Drula: BBF, Biodiversité et Biotechnologie Fongiques
Marie-Noelle Rosso: BBF, Biodiversité et Biotechnologie Fongiques
Lionel Tarrago: BBF, Biodiversité et Biotechnologie Fongiques
Bernard Henrissat: Technical University of Denmark
Katja Johansen: University of Cambridge
Ray Dupree: University of Warwick
Jean Armengaud: SPI
Paul Dupree: University of Cambridge
Jean-Guy Berrin: BBF, Biodiversité et Biotechnologie Fongiques

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract Basidiomycete fungi are the main decomposers of dead wood with an impact on the global carbon cycle. Their degradative mechanisms have been well-studied under aerobic conditions. Here, we study their activity in oxygen-depleted environments. We use metaproteomics in a field study to identify active wood-decomposing fungi and their enzymes at different depths from the wood surface, including in oxygen-depleted conditions. In vitro, we observe that the brown-rot fungus Fomitopsis pinicola can grow on wood in complete anoxia. Using 13C solid-state NMR, we demonstrate the degradation of plant cell-wall polysaccharides and fungal growth in the absence of oxygen. Proteomic analyses reveal that F. pinicola switches from a Fenton chemistry-based process under aerobic conditions to the secretion of plant cell wall-active enzymes in anoxia. Our finding that wood decay fungi can thrive in complete anoxia provides a deeper understanding of lignocellulose degradation mechanisms in nature and raises opportunities for the development of bio-inspired anaerobic processes.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-62567-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62567-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-62567-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-08-11
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62567-3