Overcoming activity/stability tradeoffs in CO oxidation catalysis by Pt/CeO2
Benjamin Bohigues,
Sergio Rojas-Buzo (),
Davide Salusso,
Yu Xia,
Avelino Corma,
Silvia Bordiga,
Mercedes Boronat,
Tom Willhammar,
Manuel Moliner and
Pedro Serna ()
Additional contact information
Benjamin Bohigues: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Sergio Rojas-Buzo: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Davide Salusso: CS 40220
Yu Xia: Stockholm University
Avelino Corma: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Silvia Bordiga: University of Turin
Mercedes Boronat: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Tom Willhammar: Stockholm University
Manuel Moliner: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Pedro Serna: Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
Nature Communications, 2025, vol. 16, issue 1, 1-13
Abstract:
Abstract The use of redox active metal oxides to support noble metals is critical in the design of highly-active CO oxidation catalysts for gas emissions control. Unfortunately, supports promoting the activity, such as CeO2, tend also to promote acute catalyst deactivation by turning highly-active metallic Pt clusters into less-active PtOx species, under practical reaction conditions (high-temperature and/or the excess of O2). This leads to a problematic activity/stability tradeoff where Pt/CeO2 catalysts, highly-active, and Pt on non-reducible supports, highly stable, are bookends. Herein, we report a method to trap Pt at V-shaped pockets/stepped sites of CeO2 that break this undesired correlation by showing both high activity and stability in the CO oxidation reaction. XAS, CO-DRIFT, XPS, HAADF-STEM, and DFT are used to infer that the generation of low order metallic Pt clusters connected to two crystallographic planes of the support is key to inhibit (deactivating) re-oxidation paths of the metal, as a result of the high-energy required to form disordered/distorted PtOx ensembles at these positions. This new material allows, thus, to operate outside the commonly observed, limiting, activity/stability tradeoff.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-62726-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62726-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-62726-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().