EconPapers    
Economics at your fingertips  
 

Electron recombination of rotationally cold D2H+ ions

A. Znotins, A. Faure, C. H. Greene, M. Grieser, F. Grussie, L. W. Isberner, Á. Kálosi, V. Kokoouline, D. Müll, D. Paul, M. Pezzella, D. W. Savin, S. Schippers, J. Tennyson, A. Wolf, O. Novotný and H. Kreckel ()
Additional contact information
A. Znotins: Max-Planck-Institut für Kernphysik
A. Faure: Université Grenoble Alpes, CNRS
C. H. Greene: Purdue University
M. Grieser: Max-Planck-Institut für Kernphysik
F. Grussie: Max-Planck-Institut für Kernphysik
L. W. Isberner: Max-Planck-Institut für Kernphysik
Á. Kálosi: Max-Planck-Institut für Kernphysik
V. Kokoouline: University of Central Florida
D. Müll: Max-Planck-Institut für Kernphysik
D. Paul: Max-Planck-Institut für Kernphysik
M. Pezzella: University College London
D. W. Savin: Columbia University
S. Schippers: Justus-Liebig-Universität Gießen
J. Tennyson: University College London
A. Wolf: Max-Planck-Institut für Kernphysik
O. Novotný: Max-Planck-Institut für Kernphysik
H. Kreckel: Max-Planck-Institut für Kernphysik

Nature Communications, 2025, vol. 16, issue 1, 1-8

Abstract: Abstract Dissociative recombination (DR) of electrons with small molecular ions is a fundamental process for the physics and chemistry of the interstellar medium and planetary atmospheres. In previous DR studies, detailed analysis of the experimental rate coefficients has been hindered by the difficulty of preparing the ions in well-defined quantum states. For polyatomic ions in particular, truly state-selective measurements have been elusive, allowing only qualitative benchmarks of theory. Here, we present DR studies of the deuterated triatomic hydrogen ion D2H+, where the molecular ions were stored for up to 1000 seconds inside the Cryogenic Storage Ring (CSR) prior to the DR measurements. Our experiments with rotationally cold D2H+ ions allow for detailed comparison to state-of-the-art theoretical calculations. We obtain very good agreement between experiment and theory even in the important collision energy range from 1 meV to 0.5 eV, where a multitude of Rydberg resonances reveal their imprint on the rate coefficient.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-62734-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62734-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-62734-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-08-21
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62734-6