Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
Teng Zhang,
Katherine A. Mazzio,
Ruocun John Wang,
Mailis Lounasvuori,
Ameer Al-Temimy,
Faidra Amargianou,
Mohamad-Assaad Mawass,
Florian Kronast,
Daniel M. Többens,
Klaus Lips,
Tristan Petit () and
Yury Gogotsi ()
Additional contact information
Teng Zhang: Drexel University
Katherine A. Mazzio: Humboldt University of Berlin
Ruocun John Wang: Drexel University
Mailis Lounasvuori: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Ameer Al-Temimy: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Faidra Amargianou: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Mohamad-Assaad Mawass: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Florian Kronast: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Daniel M. Többens: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Klaus Lips: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Tristan Petit: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Yury Gogotsi: Drexel University
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride has been reported, their lack of intrinsic hydrophilicity or metallic conductivity limits their suitability for probing the interplay between confined water and electronic transport. MXenes, a family of 2D transition metal carbides and nitrides, overcome these limitations by combining high metallic conductivity (~104 S cm−1) with hydrophilicity, offering a unique platform to investigate confined water dynamics and their influence on electronic properties. Here, we show that temperature and confinement drive structural transitions of water within MXene interlayers, including the formation of localized ice clusters, amorphous ice, and dynamic hydrogen-bonded networks. These transformations disrupt stacking order, inducing a reversible metal-to-semiconductor transition and conductivity hysteresis in MXene films. Upon heating to 340 K, the dissociation of ice clusters restores interlayer spacing and metallic behavior. Our findings experimentally establish MXenes as an exceptional platform for studying the phase change of confined water, offering new insights into how nanoscale water dynamics modulate electronic properties and enabling the design of advanced devices with tunable interlayer interactions.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-62892-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62892-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-62892-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().