EconPapers    
Economics at your fingertips  
 

Distinct Rabi splitting in confined systems of MoSe2 monolayers and (Ga,In)As quantum wells

Felix Schäfer, Henry Mittenzwey, Markus Stein (), Oliver Voigt, Lara Greten, Daniel Anders, Isabel Müller, Florian Dobener, Marzia Cuccu, Christian Fuchs, Kenji Watanabe, Takashi Taniguchi, Alexey Chernikov, Kerstin Volz, Andreas Knorr and Sangam Chatterjee
Additional contact information
Felix Schäfer: Justus-Liebig-University Giessen
Henry Mittenzwey: Technische Universität Berlin
Markus Stein: Justus-Liebig-University Giessen
Oliver Voigt: Technische Universität Berlin
Lara Greten: Technische Universität Berlin
Daniel Anders: Justus-Liebig-University Giessen
Isabel Müller: Justus-Liebig-University Giessen
Florian Dobener: Justus-Liebig-University Giessen
Marzia Cuccu: Technische Universität Dresden
Christian Fuchs: Philipps-University Marburg
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Alexey Chernikov: Technische Universität Dresden
Kerstin Volz: Philipps-University Marburg
Andreas Knorr: Technische Universität Berlin
Sangam Chatterjee: Justus-Liebig-University Giessen

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract Rabi splitting is a defining signature of strong light-matter interaction, emerging when a two-level system is resonantly driven by an optical field, resulting in a spectral doublet separated by the Rabi energy. In solid-state systems, Rabi splitting occurs at exciton resonances, where it is shaped by many-body interactions intrinsic to the material. Here, we investigate the Rabi splitting dynamics in two paradigmatic two-dimensional semiconductors: a hBN-encapsulated MoSe2 monolayer and a (Ga,In)As multiple quantum well structure. In MoSe2, strong Coulomb interactions dominate over light-matter coupling, while in the quantum wells, both interactions are of comparable strength. While both systems exhibit clear Rabi splitting under resonant excitation, their behavior diverges under increased excitation strength. MoSe2 displays sublinear Rabi splitting due to excitonic correlations, whereas (Ga,In)As quantum wells reveal additional spectral resonances and coherent optical gain, indicating a transition beyond the simple two-level regime. These contrasting behaviors are quantitatively captured by a unified microscopic many-body theory based on Heisenberg equations of motion and an exciton expansion. Our findings elucidate the impact of many-body interactions on coherent exciton dynamics and establish a framework for tailoring strong-field optical responses in two-dimensional materials.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-63098-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63098-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-63098-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-08-31
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63098-7