Non-invasive action potential recordings using printed electrolyte-gated polymer field-effect transistors
Adrica Kyndiah (),
Giulia Zoe Zemignani,
Carlotta Ronchi,
Gabriele Tullii,
Aleksandr Khudiakov,
Giuseppina Iachetta,
Stefano Chiodini,
Rosalia Moreddu,
Fabrizio Antonio Viola,
Peter J. Schwartz,
Gabriel Gomila,
Francesco De Angelis,
Luca Sala (),
Maria Rosa Antognazza and
Mario Caironi ()
Additional contact information
Adrica Kyndiah: Istituto Italiano di Tecnologia
Giulia Zoe Zemignani: Istituto Italiano di Tecnologia
Carlotta Ronchi: Istituto Italiano di Tecnologia
Gabriele Tullii: Istituto Italiano di Tecnologia
Aleksandr Khudiakov: Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics
Giuseppina Iachetta: Istituto Italiano di Tecnologia
Stefano Chiodini: Istituto Italiano di Tecnologia
Rosalia Moreddu: Istituto Italiano di Tecnologia
Fabrizio Antonio Viola: Istituto Italiano di Tecnologia
Peter J. Schwartz: Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics
Gabriel Gomila: Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST)
Francesco De Angelis: Istituto Italiano di Tecnologia
Luca Sala: Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics
Maria Rosa Antognazza: Istituto Italiano di Tecnologia
Mario Caironi: Istituto Italiano di Tecnologia
Nature Communications, 2025, vol. 16, issue 1, 1-9
Abstract:
Abstract Scalable and high-throughput platforms to non-invasively record the Action Potentials (APs) of excitable cells are highly demanded to accelerate disease diagnosis and drug discovery. AP recordings are typically achieved with the invasive and low-throughput patch clamp technique. Non-invasive alternatives like planar multielectrode arrays cannot record APs without membrane poration, preventing accurate measurements of disease states and drug effects. Here, we disclose reliable and non-invasive recording of APs with patch clamp-like quality from human stem cell-derived cardiomyocytes using an inkjet-printed polymer semiconductor in an Electrolyte-Gated Field-Effect Transistor configuration. High sensitivity is proven by the detection of drug-induced pro-arrhythmic membrane potential oscillations as early/delayed afterdepolarizations. The higher throughput potential of this platform could significantly enhance disease modelling, drug screening, safety pharmacology and the study of abiotic/biotic interfaces.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-63484-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63484-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-63484-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().