Transient domain boundary drives ultrafast magnetisation reversal
Martin Hennecke (),
Daniel Schick (),
Themistoklis P. H. Sidiropoulos,
Jun-Xiao Lin,
Zongxia Guo,
Grégory Malinowski,
Maximilian Mattern,
Lutz Ehrentraut,
Martin Schmidbauer,
Matthias Schnuerer,
Clemens Korff Schmising,
Stéphane Mangin,
Michel Hehn and
Stefan Eisebitt
Additional contact information
Martin Hennecke: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Daniel Schick: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Themistoklis P. H. Sidiropoulos: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Jun-Xiao Lin: Institut Jean Lamour
Zongxia Guo: Institut Jean Lamour
Grégory Malinowski: Institut Jean Lamour
Maximilian Mattern: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Lutz Ehrentraut: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Martin Schmidbauer: Leibniz-Institut für Kristallzüchtung
Matthias Schnuerer: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Clemens Korff Schmising: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Stéphane Mangin: Institut Jean Lamour
Michel Hehn: Institut Jean Lamour
Stefan Eisebitt: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Nature Communications, 2025, vol. 16, issue 1, 1-10
Abstract:
Abstract Light-induced magnetisation switching is one of the most intriguing and promising areas where an ultrafast phenomenon can be utilised in technological applications. So far, experiment and theory have considered the origin of all-optical helicity-independent magnetisation switching (AO-HIS) in individual magnetic films only as a microscopically local, thermally-driven process of angular momentum transfer between different subsystems. Here, we demonstrate that this local picture is insufficient and that AO-HIS must also be regarded as a spatially inhomogeneous process along the depth within a few-nanometre thin magnetic layer. Two regions of opposite magnetisation directions are observed, separated by a highly mobile boundary, which propagates along the depth of a 9.4 nm thin Gd25Co75 alloy. The dynamics of this transient boundary determines the final magnetisation state as well as the speed of AO-HIS throughout the entire magnetic layer. The ability to understand the influence of nanoscale and transient inhomogeneities on ultrafast switching phenomena and more generally on phase transitions will open new routes for material design and excitation scenarios in future devices for transferring and storing information.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-63571-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63571-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-63571-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().