Microbial binding module employs sophisticated clustered saccharide patches to selectively adhere to mucins
Thapakorn Jaroentomeechai,
Billy Veloz,
Cátia O. Soares,
Felix Goerdeler,
Ana Sofia Grosso,
Christian Büll,
Rebecca L. Miller,
Sanae Furukawa,
Irene Ginés-Alcober,
Víctor Taleb,
Pedro Merino,
Mattia Ghirardello,
Ismael Compañón,
Helena Coelho,
Jorge S. Dias,
Renaud Vincentelli,
Bernard Henrissat,
Hiren Joshi,
Henrik Clausen,
Francisco Corzana,
Filipa Marcelo,
Ramon Hurtado-Guerrero () and
Yoshiki Narimatsu ()
Additional contact information
Thapakorn Jaroentomeechai: University of Copenhagen
Billy Veloz: Campus Rio Ebro
Cátia O. Soares: NOVA University Lisbon
Felix Goerdeler: University of Copenhagen
Ana Sofia Grosso: NOVA University Lisbon
Christian Büll: University of Copenhagen
Rebecca L. Miller: University of Copenhagen
Sanae Furukawa: University of Copenhagen
Irene Ginés-Alcober: Campus Rio Ebro
Víctor Taleb: Campus Rio Ebro
Pedro Merino: Campus Rio Ebro
Mattia Ghirardello: Universidad de La Rioja
Ismael Compañón: Universidad de La Rioja
Helena Coelho: NOVA University Lisbon
Jorge S. Dias: NOVA University Lisbon
Renaud Vincentelli: Centre National de la Recherche Scientifique and Aix-Marseille University
Bernard Henrissat: Technical University of Denmark; Søltofts Plads
Hiren Joshi: University of Copenhagen
Henrik Clausen: University of Copenhagen
Francisco Corzana: Universidad de La Rioja
Filipa Marcelo: NOVA University Lisbon
Ramon Hurtado-Guerrero: University of Copenhagen
Yoshiki Narimatsu: University of Copenhagen
Nature Communications, 2025, vol. 16, issue 1, 1-14
Abstract:
Abstract The mucus lining wet body surfaces forms the interphase and barrier for the microbiota and resident microbiomes. Large mucin proteins densely decorated with O-glycans make up the mucus lining to entrap, feed and shape the microbiota, and repress biofilm formation and virulence. How mucins exert these effects is poorly understood and critical is how the microbiota recognize, sense, and break down mucins. Here, we provide structural molecular evidence that a small mucin-binding module designated X409 recognizes clustered saccharide patches comprised of rows of inner monosaccharides in adjacent O-glycans. These patches are unique to mucins and binding to these provides an elegant mechanism to retain adherence to mucins despite trimming of O-glycans during microbial scavenging of monosaccharides from mucins. Realization of clustered saccharide patch-binding motifs provides a hitherto overlooked scenario of contextual glycan epitopes and impetus for discovery of new classes of glycan-binding proteins.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-63756-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63756-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-63756-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().