Computational design and evaluation of optimal bait sets for scalable proximity proteomics
Vesal Kasmaeifar,
Saya Sedighi,
Anne-Claude Gingras () and
Kieran R. Campbell ()
Additional contact information
Vesal Kasmaeifar: Sinai Health
Saya Sedighi: Sinai Health
Anne-Claude Gingras: Sinai Health
Kieran R. Campbell: Sinai Health
Nature Communications, 2025, vol. 16, issue 1, 1-17
Abstract:
Abstract The spatial organization of proteins within eukaryotic cells underlies essential biological processes and can be mapped by identifying nearby proteins using proximity-dependent biotinylation approaches such as BioID. When applied systematically to hundreds of bait proteins, BioID has localized thousands of endogenous proteins in human cells, generating a comprehensive view of subcellular organization. However, the need for large bait sets limits the scalability of BioID for context-dependent spatial profiling across different cell types, states, or perturbations. To address this, we develop a benchmarking framework with multiple complementary metrics to assess how well a given bait subset recapitulates the structure and coverage of a reference BioID dataset. We also introduce GENBAIT, a genetic algorithm-based method that identifies optimized bait subsets predicted to retain maximal spatial information while reducing the total number of baits. Applied to three large BioID datasets, GENBAIT consistently selected subsets representing less than one-third of the original baits while preserving high coverage and network integrity. This flexible, data-driven approach enables intelligent bait selection for targeted, context-specific studies, thereby expanding the accessibility of large-scale subcellular proteome mapping.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-64383-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64383-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-64383-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().