The northeast materials database for magnetic materials
Suman Itani,
Yibo Zhang and
Jiadong Zang ()
Additional contact information
Suman Itani: University of New Hampshire
Yibo Zhang: University of New Hampshire
Jiadong Zang: University of New Hampshire
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract The discovery of magnetic materials with high operating temperature ranges and optimized performance is essential for advanced applications. Current data-driven approaches are limited by the lack of accurate, comprehensive, and feature-rich databases. This study aims to address this challenge by using Large Language Models (LLMs) to create a comprehensive, experiment-based, magnetic materials database named the Northeast Materials Database (NEMAD), which consists of 67,573 magnetic materials entries ( www.nemad.org ). The database incorporates chemical composition, magnetic phase transition temperatures, structural details, and magnetic properties. Enabled by NEMAD, we trained machine learning models to classify materials and predict transition temperatures. Our classification model achieved an accuracy of 90% in categorizing materials as ferromagnetic (FM), antiferromagnetic (AFM), and non-magnetic (NM). The regression models predict Curie (Néel) temperature with a coefficient of determination (R2) of 0.87 (0.83) and a mean absolute error (MAE) of 56K (38K). These models identified 25 (13) FM (AFM) candidates with a predicted Curie (Néel) temperature above 500K (100K) from the Materials Project. This work shows the feasibility of combining LLMs for automated data extraction and machine learning models to accelerate the discovery of magnetic materials.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-64458-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64458-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-64458-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().