Room-temperature X-ray fragment screening with serial crystallography
Sebastian Günther (),
Pontus Fischer,
Marina Galchenkova,
Sven Falke,
Patrick Y. A. Reinke,
Sreevidya Thekku Veedu,
Ana Carolina Rodrigues,
Johanna Senst,
Daniel Elinjikkal,
Lars Gumprecht,
Jan Meyer,
Henry N. Chapman,
Miriam Barthelmess and
Alke Meents ()
Additional contact information
Sebastian Günther: Deutsches Elektronen-Synchrotron DESY
Pontus Fischer: Deutsches Elektronen-Synchrotron DESY
Marina Galchenkova: Deutsches Elektronen-Synchrotron DESY
Sven Falke: Deutsches Elektronen-Synchrotron DESY
Patrick Y. A. Reinke: Deutsches Elektronen-Synchrotron DESY
Sreevidya Thekku Veedu: Deutsches Elektronen-Synchrotron DESY
Ana Carolina Rodrigues: Deutsches Elektronen-Synchrotron DESY
Johanna Senst: Deutsches Elektronen-Synchrotron DESY
Daniel Elinjikkal: Deutsches Elektronen-Synchrotron DESY
Lars Gumprecht: Deutsches Elektronen-Synchrotron DESY
Jan Meyer: Deutsches Elektronen-Synchrotron DESY
Henry N. Chapman: Deutsches Elektronen-Synchrotron DESY
Miriam Barthelmess: Deutsches Elektronen-Synchrotron DESY
Alke Meents: Deutsches Elektronen-Synchrotron DESY
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract Structural insights into protein-ligand interactions are essential for advancing drug development, with macromolecular X-ray crystallography being a cornerstone technique. Commonly X-ray data collection is conducted at cryogenic temperatures to mitigate radiation damage effects. However, this can introduce artifacts not only in the protein conformation but also in protein-ligand interactions. Recent studies highlight the advantages of room-temperature (RT) crystallography in capturing relevant states much closer to physiological temperatures. We have advanced fixed-target serial crystallography to enable high-throughput fragment screening at RT. Here we systematically compare RT fragment screening of the Fosfomycin-resistance protein A from Klebsiella pneumoniae (FosAKP), an enzyme involved in antibiotic resistance, with conventional single crystal data collection at cryogenic temperature (cryo). With RT serial crystallography we achieve resolutions comparable to cryogenic methods and identify a previously unobserved conformational state of the active site, offering additional starting points for drug design. For ligands identified in both screens, temperature does not have an influence on the binding mode of the ligand. But overall, we observe more binders at cryo, both at physiologically relevant and non-relevant sites. With the potential for further automation, RT screening with serial crystallography can advance drug development pipelines by making undiscovered conformations of proteins accessible.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-64918-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64918-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-64918-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().