EconPapers    
Economics at your fingertips  
 

Moving magnetic domain walls with sound alone

Alejandro Rivelles, Rocío Yanes, Luis Torres, Manuel Abuín, Javier Grandal, Maedeh Sepehr, Guzmán Orero-Gámez, Rodrigo Guedas, Laura Fernández-García, Raúl Izquierdo-López, Marco Maicas, Maria del Mar Sanz, Jorge Pedrós, Fernando Calle, Sandra Ruiz-Gómez, Muhammad Waqas Khaliq, Miguel Angel Niño, Saül Vélez, Michael Foerster, Luis López-Díaz and Jose Luis Prieto ()
Additional contact information
Alejandro Rivelles: Universidad Politécnica de Madrid
Rocío Yanes: Salamanca
Luis Torres: Salamanca
Manuel Abuín: Universidad Politécnica de Madrid
Javier Grandal: Universidad Politécnica de Madrid
Maedeh Sepehr: Universidad Politécnica de Madrid
Guzmán Orero-Gámez: Universidad Autónoma de Madrid
Rodrigo Guedas: Universidad Politécnica de Madrid
Laura Fernández-García: Universidad Complutense de Madrid
Raúl Izquierdo-López: Universidad Politécnica de Madrid
Marco Maicas: Universidad Politécnica de Madrid
Maria del Mar Sanz: Universidad Politécnica de Madrid
Jorge Pedrós: Universidad Politécnica de Madrid
Fernando Calle: Universidad Politécnica de Madrid
Sandra Ruiz-Gómez: Cerdañola del Valles
Muhammad Waqas Khaliq: Cerdañola del Valles
Miguel Angel Niño: Cerdañola del Valles
Saül Vélez: Universidad Autónoma de Madrid
Michael Foerster: Cerdañola del Valles
Luis López-Díaz: Salamanca
Jose Luis Prieto: Universidad Politécnica de Madrid

Nature Communications, 2025, vol. 16, issue 1, 1-7

Abstract: Abstract Surface Acoustic Waves (SAW) have been used in spintronic applications to decrease the magnetic field or the electric current required to act on the magnetization. A common belief is that a SAW alone cannot achieve a directed magnetic switching in a device without an assisting magnetic field or electric current. In this work, we demonstrate magnetic domain wall motion driven solely by an acoustic wave. Using XMCD-PEEM, we show extensive evidence of SAW-induced and field-free magnetic domain wall motion (DW) in the direction of the wave propagation. Our micromagnetic simulations reveal a mechanism that allows the SAW to transfer linear momentum to the DW. Experimentally, the largest DW average velocity measured was ~12 m/s, although our simulations predict that velocities in the range of 100 m/s could be attained. This new mechanism opens the door to designing innovative spintronic devices where the magnetization can be controlled exclusively by an acoustic wave.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-64934-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64934-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-64934-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-06
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64934-6