Atomic-scale insights into surface reconstruction and transformation in Co-Cr spinel oxides during the oxygen evolution reaction
Biao He,
Pouya Hosseini,
Tatiana Priamushko,
Oliver Trost,
Eko Budiyanto,
Christoph Bondue,
Jonas Schulwitz,
Aleksander Kostka,
Harun Tüysüz,
Martin Muhler,
Serhiy Cherevko,
Kristina Tschulik and
Tong Li ()
Additional contact information
Biao He: Ruhr-Universität Bochum
Pouya Hosseini: Ruhr-Universität Bochum
Tatiana Priamushko: Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Oliver Trost: Ruhr-Universität Bochum
Eko Budiyanto: Max-Planck-Institut für Kohlenforschung
Christoph Bondue: Ruhr-Universität Bochum
Jonas Schulwitz: Ruhr-Universität Bochum
Aleksander Kostka: Ruhr-Universität Bochum
Harun Tüysüz: Max-Planck-Institut für Kohlenforschung
Martin Muhler: Ruhr-Universität Bochum
Serhiy Cherevko: Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2)
Kristina Tschulik: Max-Planck-Institut für Nachhaltige Materialien GmbH
Tong Li: Ruhr-Universität Bochum
Nature Communications, 2025, vol. 16, issue 1, 1-20
Abstract:
Abstract Optimizing the activity and longevity of oxygen evolution reaction (OER) electrocatalysts requires an atomic-scale understanding of multiple reconstruction and transformation processes occurring in the surface and sub-surface regions of the electrocatalyst. Herein, a multimodal method combining X-ray absorption fine structure and photoemission spectroscopy, in situ Raman spectroscopy, transmission electron microscopy and atom probe tomography with electrochemical measurements is employed to unveil how the changes in oxidation states, atomic coordination, structure and composition on ~20 nm CoCr2O4 and Co2CrO4 spinel nanoparticle surfaces affect OER activity and stability in alkaline media. CoCr2O4 undergoes an activation process and subsequently retains high OER activity for extended durations. The activation of CoCr2O4 is induced by a steady and substantial Cr dissolution that facilitates bulk incorporation and intercalation of hydroxide ions, coupled with the highly reversible ( $${{{{\rm{Co}}}}}_{{{{\rm{Td}}}}}^{{{{\rm{II}}}}}$$ Co Td II ,Cr)(OH)2 ↔ ( $${{{{\rm{Co}}}}}_{{{{\rm{Oct}}}}}^{{{{\rm{III}}}}}$$ Co Oct III ,Cr)OOH transformation, which enhances OER activity and stability. In comparison, a ~ 2 nm thick amorphous self-limiting Cr-based (oxy)hydroxide forms on Co2CrO4 upon cycling, contributing to OER activity. As OER proceeds, such Cr-based (oxy)hydroxide layers on Co2CrO4 are depleted from the surfaces, leading to deteriorating activity. Overall, this study demonstrates that continuous Cr dissolution triggers an intercalation-assisted ( $${{{{\rm{Co}}}}}_{{{{\rm{Td}}}}}^{{{{\rm{II}}}}}$$ Co Td II ,Cr)(OH)2 ↔ ( $${{{{\rm{Co}}}}}_{{{{\rm{Oct}}}}}^{{{{\rm{III}}}}}$$ Co Oct III ,Cr)OOH transformation that can promote the OER activity and stability of Co-based spinels.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-65626-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65626-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-65626-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().