EconPapers    
Economics at your fingertips  
 

Fermi polarons under strain-induced pseudomagnetic fields

Denis Yagodkin (), Kenneth Burfeindt, Zakhar A. Iakovlev, Abhijeet M. Kumar, Adrián Dewambrechies, Oğuzhan Yücel, Bianca Höfer, Cornelius Gahl, Mikhail M. Glazov and Kirill I. Bolotin ()
Additional contact information
Denis Yagodkin: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Kenneth Burfeindt: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Zakhar A. Iakovlev: Ioffe Institute
Abhijeet M. Kumar: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Adrián Dewambrechies: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Oğuzhan Yücel: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Bianca Höfer: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Cornelius Gahl: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE
Mikhail M. Glazov: Ioffe Institute
Kirill I. Bolotin: Freie Universitat Berlin, Department of Physics and Halle-Berlin-Regensburg Cluster of Excellence CCE

Nature Communications, 2025, vol. 16, issue 1, 1-8

Abstract: Abstract Excitons in Transition Metal Dichalcogenides (TMDs) acquire a spin-like quantum number, a pseudospin, originating from the crystal’s discrete rotational symmetry. Here, we break this symmetry using a tunable uniaxial strain, effectively generating a pseudomagnetic field acting on exciton valley degree of freedom. Under this field, we demonstrate pseudospin analogs of spintronic phenomena such as the Zeeman effect and Larmor precession and determine fundamental timescales for pseudospin dynamics in TMDs. Finally, we uncover the bosonic – as opposed to fermionic – nature of many-body excitonic species using the pseudomagnetic equivalent of the g-factor spectroscopy. Our work is the first step toward establishing this spectroscopy as a universal method for probing correlated many-body states and realizing pseudospin analogs of spintronic devices.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-66192-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66192-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-66192-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-22
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66192-y