EconPapers    
Economics at your fingertips  
 

Ultrafast nonthermal electron transfer at plasmonic interfaces

Yuying Gao (), Jonathan Diederich, Yuxin Xie, Qianhong Zhu, Christian Höhn, Karsten Harbauer, Fengtao Fan, Can Li, Roel van de Krol and Dennis Friedrich ()
Additional contact information
Yuying Gao: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
Jonathan Diederich: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
Yuxin Xie: Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics
Qianhong Zhu: Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics
Christian Höhn: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
Karsten Harbauer: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
Fengtao Fan: Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics
Can Li: Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics
Roel van de Krol: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels
Dennis Friedrich: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract Plasmon-induced charge generation and separation in metal/semiconductor heterostructures offer a promising platform for hot carrier-based energy conversion applications. A key challenge is understanding ultrafast hot carrier transfer at heterogeneous interfaces, as the details of plasmonic enhanced charge transfer dynamics and accompanying energy relaxation remain unclear. Here, by tracking charge transfer processes across spatial, temporal, and energy domains, we reveal ultrafast, nonthermal electron transfer directly from gold nanoparticles to gallium nitride (GaN) without energy losses from electron-electron scattering. This process facilitates efficient charge separation and produces a nonthermal distribution of transferred electron in GaN—contrasting with substantial energy dissipation typically observed during conventional interfacial charge transport. Furthermore, we demonstrate the pivotal role of light polarization in modulating charge generation and energy distribution, which enables dynamic control of electron relaxation and enhances the possibility of nonthermal electrons surmounting the Schottky barrier for successful injection. These insights pave the way for advancing hot-carrier management and achieving coherent control of non-equilibrium charge behavior across multiple dimensions for solar energy conversion and optoelectronic applications.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-66640-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66640-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-66640-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-26
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66640-9