Current drive at plasma densities required for thermonuclear reactors
R. Cesario (),
L. Amicucci,
A. Cardinali,
C. Castaldo,
M. Marinucci,
L. Panaccione,
F. Santini,
O. Tudisco,
M.L. Apicella,
G. Calabrò,
C. Cianfarani,
D. Frigione,
A. Galli,
G. Mazzitelli,
C. Mazzotta,
V. Pericoli,
G. Schettini and
A.A. Tuccillo
Additional contact information
R. Cesario: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
L. Amicucci: Università di Roma Sapienza, Via Eudossiana 18, Rome 00184, Italy.
A. Cardinali: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
C. Castaldo: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
M. Marinucci: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
L. Panaccione: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
F. Santini: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
O. Tudisco: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
M.L. Apicella: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
G. Calabrò: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
C. Cianfarani: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
D. Frigione: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
A. Galli: Università di Roma Sapienza, Via Eudossiana 18, Rome 00184, Italy.
G. Mazzitelli: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
C. Mazzotta: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
V. Pericoli: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
G. Schettini: Università Roma Tre, Facoltà di Ingegneria Dip. Elettronica Applicata, Via della Vasca Navale 84, Rome 00146, Italy.
A.A. Tuccillo: Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati
Nature Communications, 2010, vol. 1, issue 1, 1-10
Abstract:
Abstract Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms1052 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1052
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1052
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().