Phase seeding of a terahertz quantum cascade laser
Dimitri Oustinov,
Nathan Jukam (),
Rakchanok Rungsawang,
Julien Madéo,
Stefano Barbieri,
Pascal Filloux,
Carlo Sirtori,
Xavier Marcadet,
Jérôme Tignon and
Sukhdeep Dhillon
Additional contact information
Dimitri Oustinov: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Nathan Jukam: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Rakchanok Rungsawang: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Julien Madéo: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Stefano Barbieri: Matériaux et Phénomènes Quantiques, Université D. Diderot, Paris 7, 75251 Paris Cedex 05, France.
Pascal Filloux: Matériaux et Phénomènes Quantiques, Université D. Diderot, Paris 7, 75251 Paris Cedex 05, France.
Carlo Sirtori: Matériaux et Phénomènes Quantiques, Université D. Diderot, Paris 7, 75251 Paris Cedex 05, France.
Xavier Marcadet: Alcatel-Thales 3-5 Lab
Jérôme Tignon: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Sukhdeep Dhillon: Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot
Nature Communications, 2010, vol. 1, issue 1, 1-6
Abstract:
Abstract The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms1068 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1068
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1068
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().