Overlap between folding and functional energy landscapes for adenylate kinase conformational change
Ulrika Olsson and
Magnus Wolf-Watz ()
Additional contact information
Ulrika Olsson: Chemical Biological Centre, Umeå University
Magnus Wolf-Watz: Chemical Biological Centre, Umeå University
Nature Communications, 2010, vol. 1, issue 1, 1-8
Abstract:
Abstract Enzyme function is often dependent on fluctuations between inactive and active structural ensembles. Adenylate kinase isolated from Escherichia coli (AKe) is a small phosphotransfer enzyme in which interconversion between inactive (open) and active (closed) conformations is rate limiting for catalysis. AKe has a modular three-dimensional architecture with two flexible substrate-binding domains that interact with the substrates AMP, ADP and ATP. Here, we show by using a combination of biophysical and mutagenic approaches that the interconversion between open and closed states of the ATP-binding subdomain involves partial subdomain unfolding/refolding in an otherwise folded enzyme. These results provide a novel and, possibly general, molecular mechanism for the switch between open and closed conformations in AKe.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms1106 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1106
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1106
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().