A microscopic view on the Mott transition in chromium-doped V2O3
S. Lupi (),
L. Baldassarre,
B. Mansart,
A. Perucchi,
A. Barinov,
P. Dudin,
E. Papalazarou,
F. Rodolakis,
J. -P. Rueff,
J. -P. Itié,
S. Ravy,
D. Nicoletti,
P. Postorino,
P. Hansmann,
N. Parragh,
A. Toschi,
T. Saha-Dasgupta,
O. K. Andersen,
G. Sangiovanni,
K. Held and
M. Marsi ()
Additional contact information
S. Lupi: Universitá di Roma 'La Sapienza', Piazzale A. Moro 2
L. Baldassarre: Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza
B. Mansart: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
A. Perucchi: Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza
A. Barinov: Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza
P. Dudin: Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza
E. Papalazarou: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
F. Rodolakis: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
J. -P. Rueff: Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
J. -P. Itié: Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
S. Ravy: Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
D. Nicoletti: Universitá di Roma 'La Sapienza', Piazzale A. Moro 2
P. Postorino: Universitá di Roma 'La Sapienza', Piazzale A. Moro 2
P. Hansmann: Institute of Solid State Physics, Vienna University of Technology
N. Parragh: Institute of Solid State Physics, Vienna University of Technology
A. Toschi: Institute of Solid State Physics, Vienna University of Technology
T. Saha-Dasgupta: S.N. Bose Center for Basic Sciences, Salt Lake
O. K. Andersen: Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1
G. Sangiovanni: Institute of Solid State Physics, Vienna University of Technology
K. Held: Institute of Solid State Physics, Vienna University of Technology
M. Marsi: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
Nature Communications, 2010, vol. 1, issue 1, 1-7
Abstract:
Abstract V2O3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V2O3 with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure, that promotes a genuine Mott transition to an eventually homogeneous metallic state.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms1109 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1109
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1109
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().