EconPapers    
Economics at your fingertips  
 

Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

Jer-Shing Huang (), Victor Callegari, Peter Geisler, Christoph Brüning, Johannes Kern, Jord C. Prangsma, Xiaofei Wu, Thorsten Feichtner, Johannes Ziegler, Pia Weinmann, Martin Kamp, Alfred Forchel, Paolo Biagioni, Urs Sennhauser and Bert Hecht ()
Additional contact information
Jer-Shing Huang: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Victor Callegari: EMPA, Swiss Federal Laboratories for Materials Testing and Research, Electronics/Metrology/Reliability Laboratory, Ueberlandstrasse 129, Dübendorf CH-8600, Switzerland.
Peter Geisler: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Christoph Brüning: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Johannes Kern: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Jord C. Prangsma: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Xiaofei Wu: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Thorsten Feichtner: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Johannes Ziegler: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Pia Weinmann: Technische Physik, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Martin Kamp: Technische Physik, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Alfred Forchel: Technische Physik, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.
Paolo Biagioni: Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
Urs Sennhauser: EMPA, Swiss Federal Laboratories for Materials Testing and Research, Electronics/Metrology/Reliability Laboratory, Ueberlandstrasse 129, Dübendorf CH-8600, Switzerland.
Bert Hecht: Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany.

Nature Communications, 2010, vol. 1, issue 1, 1-8

Abstract: Abstract Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm2) but thin (

Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms1143 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1143

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1143

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1143