EconPapers    
Economics at your fingertips  
 

Chemical processes in the deep interior of Uranus

Ricky Chau (), Sebastien Hamel and William J. Nellis
Additional contact information
Ricky Chau: Lawrence Livermore National Laboratory, 7000 East Avenue
Sebastien Hamel: Lawrence Livermore National Laboratory, 7000 East Avenue
William J. Nellis: Harvard University

Nature Communications, 2011, vol. 2, issue 1, 1-5

Abstract: Abstract The unusual magnetic fields of the planets Uranus and Neptune represent important observables for constraining and developing deep interior models. Models suggests that the unusual non-dipolar and non-axial magnetic fields of these planets originate from a thin convective and conducting shell of material around a stably stratified fluid core. Here, we present an experimental and computational study of the physical properties of a fluid representative of the interior of Uranus and Neptune. Our electrical conductivity results confirm that the core cannot be well mixed if it is to generate non-axisymmetric magnetic fields. The molecular dynamics simulations highlight the importance of chemistry on the properties of this complex mixture, including the formation of large clusters of carbon and nitrogen and a possible mechanism for a compositional gradient, which may lead to a stably stratified core.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms1198 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1198

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1198

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1198