Magnetic vortex core reversal by excitation of spin waves
Matthias Kammerer (),
Markus Weigand,
Michael Curcic,
Matthias Noske,
Markus Sproll,
Arne Vansteenkiste,
Bartel Van Waeyenberge,
Hermann Stoll,
Georg Woltersdorf,
Christian H. Back and
Gisela Schuetz
Additional contact information
Matthias Kammerer: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Markus Weigand: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Michael Curcic: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Matthias Noske: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Markus Sproll: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Arne Vansteenkiste: Ghent University, Krijgslaan 281 S1, 9000 Ghent, Belgium.
Bartel Van Waeyenberge: Ghent University, Krijgslaan 281 S1, 9000 Ghent, Belgium.
Hermann Stoll: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Georg Woltersdorf: Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31
Christian H. Back: Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31
Gisela Schuetz: Max-Planck-Institut für Metallforschung, Heisenbergstraße 3, 70569 Stuttgart, Germany.
Nature Communications, 2011, vol. 2, issue 1, 1-6
Abstract:
Abstract Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms1277 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1277
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1277
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().