Field measurements suggest the mechanism of laser-assisted water condensation
S. Henin,
Y. Petit,
P. Rohwetter,
K. Stelmaszczyk,
Z.Q. Hao,
W.M. Nakaema,
A. Vogel,
T. Pohl,
F. Schneider,
J. Kasparian (),
K. Weber,
L. Wöste and
J.-P. Wolf
Additional contact information
S. Henin: Teramobile, GAP, Université de Genève, rue de l'Ecole de Médecine 20
Y. Petit: Teramobile, GAP, Université de Genève, rue de l'Ecole de Médecine 20
P. Rohwetter: Teramobile, Institut für Experimentalphysik, Freie Universität Berlin
K. Stelmaszczyk: Teramobile, Institut für Experimentalphysik, Freie Universität Berlin
Z.Q. Hao: Teramobile, Institut für Experimentalphysik, Freie Universität Berlin
W.M. Nakaema: Teramobile, Institut für Experimentalphysik, Freie Universität Berlin
A. Vogel: Environmental Measurement Techniques, University of Applied Sciences, Düsseldorf, Josef-Gockeln-Str. 9, D-40474, Dusseldorf, Germany.
T. Pohl: Environmental Measurement Techniques, University of Applied Sciences, Düsseldorf, Josef-Gockeln-Str. 9, D-40474, Dusseldorf, Germany.
F. Schneider: Grimm Aerosol Technik GmbH
J. Kasparian: Teramobile, GAP, Université de Genève, rue de l'Ecole de Médecine 20
K. Weber: Environmental Measurement Techniques, University of Applied Sciences, Düsseldorf, Josef-Gockeln-Str. 9, D-40474, Dusseldorf, Germany.
L. Wöste: Teramobile, Institut für Experimentalphysik, Freie Universität Berlin
J.-P. Wolf: Teramobile, GAP, Université de Genève, rue de l'Ecole de Médecine 20
Nature Communications, 2011, vol. 2, issue 1, 1-7
Abstract:
Abstract Because of the potential impact on agriculture and other key human activities, efforts have been dedicated to the local control of precipitation. The most common approach consists of dispersing small particles of dry ice, silver iodide, or other salts in the atmosphere. Here we show, using field experiments conducted under various atmospheric conditions, that laser filaments can induce water condensation and fast droplet growth up to several μm in diameter in the atmosphere as soon as the relative humidity exceeds 70%. We propose that this effect relies mainly on photochemical formation of p.p.m.-range concentrations of hygroscopic HNO3, allowing efficient binary HNO3–H2O condensation in the laser filaments. Thermodynamic, as well as kinetic, numerical modelling based on this scenario semiquantitatively reproduces the experimental results, suggesting that particle stabilization by HNO3 has a substantial role in the laser-induced condensation.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms1462 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1462
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1462
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().