EconPapers    
Economics at your fingertips  
 

Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink

Kai Wang, Ethan Schonbrun, Paul Steinvurzel and Kenneth B. Crozier ()
Additional contact information
Kai Wang: School of Engineering and Applied Sciences, Harvard University
Ethan Schonbrun: School of Engineering and Applied Sciences, Harvard University
Paul Steinvurzel: School of Engineering and Applied Sciences, Harvard University
Kenneth B. Crozier: School of Engineering and Applied Sciences, Harvard University

Nature Communications, 2011, vol. 2, issue 1, 1-6

Abstract: Abstract Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms1480 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1480

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1480

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1480