EconPapers    
Economics at your fingertips  
 

A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum

Ling Huang, Qing-Jie Li, Zhi-Wei Shan (), Ju Li (), Jun Sun and Evan Ma
Additional contact information
Ling Huang: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
Qing-Jie Li: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
Zhi-Wei Shan: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
Ju Li: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
Jun Sun: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
Evan Ma: Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University

Nature Communications, 2011, vol. 2, issue 1, 1-6

Abstract: Abstract Because of crystal symmetry, body centred cubic (BCC) metals have large differences in lattice friction between screw and edge dislocations, and manifest generally different mechanical behaviours from face centred cubic (FCC) metals. Although mechanical annealing (significant drop in stored dislocation density in response to applied stress) has been observed in FCC metals, it has not been observed in BCC metals so far. Here we show that significant mechanical annealing does occur in BCC Mo pillars, when their diameters decrease to hundreds of nanometers. In addition, there exists a critical diameter for focused ion beam milled pillars, below which the strengthening exponent increases dramatically, from ~0.3 to ~1. Thus, a new regime of size effects in BCC metals is discovered that converges to that of FCC metals, revealing deep connection in the dislocation dynamics of the two systems.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms1557 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1557

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1557

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1557