Integrated photonic quantum gates for polarization qubits
Andrea Crespi,
Roberta Ramponi,
Roberto Osellame (),
Linda Sansoni,
Irene Bongioanni,
Fabio Sciarrino,
Giuseppe Vallone and
Paolo Mataloni
Additional contact information
Andrea Crespi: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
Roberta Ramponi: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
Roberto Osellame: Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
Linda Sansoni: Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
Irene Bongioanni: Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
Fabio Sciarrino: Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
Giuseppe Vallone: Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
Paolo Mataloni: Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
Nature Communications, 2011, vol. 2, issue 1, 1-6
Abstract:
Abstract The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/ncomms1570 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1570
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1570
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().