EconPapers    
Economics at your fingertips  
 

Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound

Lluís Mañosa (), David González-Alonso, Antoni Planes, Maria Barrio, Josep-Lluís Tamarit, Ivan S. Titov, Mehmet Acet, Amitava Bhattacharyya and Subham Majumdar
Additional contact information
Lluís Mañosa: Departament d'Estructura i Constituents de la Matèria. Facultat de Fı´sica. Universitat de Barcelona
David González-Alonso: Departament d'Estructura i Constituents de la Matèria. Facultat de Fı´sica. Universitat de Barcelona
Antoni Planes: Departament d'Estructura i Constituents de la Matèria. Facultat de Fı´sica. Universitat de Barcelona
Maria Barrio: Departament de Fı´sica i Enginyeria Nuclear. ETSEIB. Universitat Politècnica de Catalunya. Diagonal 647 and Center for Research in NanoEngineering
Josep-Lluís Tamarit: Departament de Fı´sica i Enginyeria Nuclear. ETSEIB. Universitat Politècnica de Catalunya. Diagonal 647 and Center for Research in NanoEngineering
Ivan S. Titov: Experimentalphysik, Universität Duisburg-Essen
Mehmet Acet: Experimentalphysik, Universität Duisburg-Essen
Amitava Bhattacharyya: Department of Solid State Physics. Indian Association for the Cultivation of Science
Subham Majumdar: Department of Solid State Physics. Indian Association for the Cultivation of Science

Nature Communications, 2011, vol. 2, issue 1, 1-5

Abstract: Abstract Application of hydrostatic pressure under adiabatic conditions causes a change in temperature in any substance. This effect is known as the barocaloric effect and the vast majority of materials heat up when adiabatically squeezed, and they cool down when pressure is released (conventional barocaloric effect). There are, however, materials exhibiting an inverse barocaloric effect: they cool when pressure is applied, and they warm when it is released. Materials exhibiting the inverse barocaloric effect are rather uncommon. Here we report an inverse barocaloric effect in the intermetallic compound La-Fe-Co-Si, which is one of the most promising candidates for magnetic refrigeration through its giant magnetocaloric effect. We have found that application of a pressure of only 1 kbar causes a temperature change of about 1.5 K. This value is larger than the magnetocaloric effect in this compound for magnetic fields that are available with permanent magnets.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms1606 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1606

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1606

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1606