EconPapers    
Economics at your fingertips  
 

Broadband graphene terahertz modulators enabled by intraband transitions

Berardi Sensale-Rodriguez, Rusen Yan, Michelle M. Kelly, Tian Fang, Kristof Tahy, Wan Sik Hwang, Debdeep Jena, Lei Liu and Huili Grace Xing ()
Additional contact information
Berardi Sensale-Rodriguez: University of Notre Dame
Rusen Yan: University of Notre Dame
Michelle M. Kelly: University of Notre Dame
Tian Fang: University of Notre Dame
Kristof Tahy: University of Notre Dame
Wan Sik Hwang: University of Notre Dame
Debdeep Jena: University of Notre Dame
Lei Liu: University of Notre Dame
Huili Grace Xing: University of Notre Dame

Nature Communications, 2012, vol. 3, issue 1, 1-7

Abstract: Abstract Terahertz technology promises myriad applications including imaging, spectroscopy and communications. However, one major bottleneck at present for advancing this field is the lack of efficient devices to manipulate the terahertz electromagnetic waves. Here we demonstrate that exceptionally efficient broadband modulation of terahertz waves at room temperature can be realized using graphene with extremely low intrinsic signal attenuation. We experimentally achieved more than 2.5 times superior modulation than prior broadband intensity modulators, which is also the first demonstrated graphene-based device enabled solely by intraband transitions. The unique advantages of graphene in comparison to conventional semiconductors are the ease of integration and the extraordinary transport properties of holes, which are as good as those of electrons owing to the symmetric conical band structure of graphene. Given recent progress in graphene-based terahertz emitters and detectors, graphene may offer some interesting solutions for terahertz technologies.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms1787 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1787

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1787

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1787