Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate
W.S. Lee (),
Y.D. Chuang,
R.G. Moore,
Y. Zhu,
L. Patthey,
M. Trigo,
D.H. Lu,
P.S. Kirchmann,
O. Krupin,
M. Yi,
M. Langner,
N. Huse,
J.S. Robinson,
Y. Chen,
S.Y. Zhou,
G. Coslovich,
B. Huber,
D.A. Reis,
R.A. Kaindl,
R.W. Schoenlein,
D. Doering,
P. Denes,
W.F. Schlotter,
J.J. Turner,
S.L. Johnson,
M. Först,
T. Sasagawa,
Y.F. Kung,
A.P. Sorini,
A.F. Kemper,
B. Moritz,
T.P. Devereaux,
D.-H. Lee,
Z.X. Shen () and
Z. Hussain
Additional contact information
W.S. Lee: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
Y.D. Chuang: Advanced Light Source, Lawrence Berkeley National Laboratory
R.G. Moore: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
Y. Zhu: Lawrence Berkeley National Laboratory
L. Patthey: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
M. Trigo: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
D.H. Lu: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
P.S. Kirchmann: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
O. Krupin: European XFEL
M. Yi: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
M. Langner: Lawrence Berkeley National Laboratory
N. Huse: Lawrence Berkeley National Laboratory
J.S. Robinson: Lawrence Berkeley National Laboratory
Y. Chen: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
S.Y. Zhou: Advanced Light Source, Lawrence Berkeley National Laboratory
G. Coslovich: Lawrence Berkeley National Laboratory
B. Huber: Lawrence Berkeley National Laboratory
D.A. Reis: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
R.A. Kaindl: Lawrence Berkeley National Laboratory
R.W. Schoenlein: Advanced Light Source, Lawrence Berkeley National Laboratory
D. Doering: Lawrence Berkeley National Laboratory
P. Denes: Lawrence Berkeley National Laboratory
W.F. Schlotter: Linac Coherent Light Source, SLAC National Accelerator Laboratory
J.J. Turner: Linac Coherent Light Source, SLAC National Accelerator Laboratory
S.L. Johnson: Swiss Light Source, Paul Scherrer Institut
M. Först: Max-Planck Research Group for Structural Dynamics, University of Hamburg, CFEL
T. Sasagawa: Materials and Structures Laboratory, Tokyo Institute of Technology
Y.F. Kung: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
A.P. Sorini: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
A.F. Kemper: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
B. Moritz: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
T.P. Devereaux: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
D.-H. Lee: University of California at Berkeley
Z.X. Shen: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University
Z. Hussain: Advanced Light Source, Lawrence Berkeley National Laboratory
Nature Communications, 2012, vol. 3, issue 1, 1-6
Abstract:
Abstract The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La1.75Sr0.25NiO4 to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms1837 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1837
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1837
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().