EconPapers    
Economics at your fingertips  
 

Unreachable glass transition in dilute dipolar magnet

A. Biltmo and P. Henelius ()
Additional contact information
A. Biltmo: Royal Institute of Technology
P. Henelius: Royal Institute of Technology

Nature Communications, 2012, vol. 3, issue 1, 1-5

Abstract: Abstract In magnetic systems the combined effects of disorder and frustration may cause the moments to freeze into a disordered state at a spin-glass transition. Recent experiments have shown that the rare earth compound LiHo0.045Y0.955F4 freezes, but that the transition is unreachable because of dynamics that are 107 times slower than in ordinary spin-glass materials. This conclusion refutes earlier investigations reporting a speed-up of the dynamics into an exotic anti-glass phase caused by entanglement of quantum dipoles. Here we present a theory, backed by numerical simulations, which describes the material in terms of classical dipoles governed by Glauber dynamics. The dipoles freeze and we find that the ultra-slow dynamics are caused by rare, strongly ordered clusters, which give rise to a previously predicted, but hitherto unobserved, Griffths phase between the paramagnetic and spin-glass phases. In addition, the hyperfine interaction creates a high energy barrier to flipping the electronic spin, resulting in a clear signature in the dynamic correlation function.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms1857 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1857

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1857

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1857