EconPapers    
Economics at your fingertips  
 

Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate

B. Phillabaum, E.W. Carlson () and K.A. Dahmen
Additional contact information
B. Phillabaum: Purdue University
E.W. Carlson: Purdue University
K.A. Dahmen: University of Illinois

Nature Communications, 2012, vol. 3, issue 1, 1-8

Abstract: Abstract Surface probes such as scanning tunnelling microscopy have detected complex electronic patterns at the nanoscale in many high-temperature superconductors. In cuprates, the pattern formation is associated with the pseudogap phase, a precursor to the high-temperature superconducting state. Rotational symmetry breaking of the host crystal in the form of electronic nematicity has recently been proposed as a unifying theme of the pseudogap phase. However, the fundamental physics governing the nanoscale pattern formation has not yet been identifed. Here we introduce a new set of methods for analysing strongly correlated electronic systems, including the effects of both disorder and broken symmetry. We use universal cluster properties extracted from scanning tunnelling microscopy studies of cuprate superconductors to identify the fundamental physics controlling the complex pattern formation. Because of a delicate balance between disorder, interactions, and material anisotropy, we find that the electron nematic is fractal in nature, and that it extends throughout the bulk of the material.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms1920 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1920

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms1920

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1920