Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids
Xiaoli Shi,
Danny W-K. Ng,
Changqing Zhang,
Luca Comai,
Wenxue Ye and
Z. Jeffrey Chen ()
Additional contact information
Xiaoli Shi: Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station, A4800, Austin, Texas 78712, USA.
Danny W-K. Ng: Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station, A4800, Austin, Texas 78712, USA.
Changqing Zhang: Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station, A4800, Austin, Texas 78712, USA.
Luca Comai: Plant Biology and Genome Center, University of California, 451 Health Sciences Drive, Davis, Davis, California 95616, USA.
Wenxue Ye: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University
Z. Jeffrey Chen: Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station, A4800, Austin, Texas 78712, USA.
Nature Communications, 2012, vol. 3, issue 1, 1-9
Abstract:
Abstract Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, cis- and trans-regulation is associated with chromatin modifications. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/ncomms1954 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1954
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms1954
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().