EconPapers    
Economics at your fingertips  
 

Flexible and transparent all-graphene circuits for quaternary digital modulations

Seunghyun Lee, Kyunghoon Lee, Chang-Hua Liu, Girish S. Kulkarni and Zhaohui Zhong ()
Additional contact information
Seunghyun Lee: University of Michigan
Kyunghoon Lee: University of Michigan
Chang-Hua Liu: University of Michigan
Girish S. Kulkarni: University of Michigan
Zhaohui Zhong: University of Michigan

Nature Communications, 2012, vol. 3, issue 1, 1-7

Abstract: Abstract In modern communication systems, modulation is a key function that embeds the baseband signal (information) into a carrier wave so that it can be successfully broadcasted through a medium such as air or cables. Here we report a flexible all-graphene modulator circuit with the capability of encoding a carrier signal with quaternary digital information. By exploiting the ambipolarity and the nonlinearity in a graphene transistor, we demonstrate two types of quaternary modulation schemes: quaternary amplitude-shift keying and quadrature phase-shift keying. Remarkably, both modulation schemes can be realized with just 1 and 2 all-graphene transistors, respectively, representing a drastic reduction in circuit complexity when compared with conventional modulators. In addition, the circuit is not only flexible but also highly transparent (~95% transmittance) owing to its all-graphene design with every component (channel, interconnects, load resistor and source/drain/gate electrodes) fabricated from graphene films.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms2021 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2021

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2021

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2021