Lightweight nanoporous metal hydroxide-rich zeotypes
Benjamin T.R. Littlefield and
Mark T. Weller ()
Additional contact information
Benjamin T.R. Littlefield: University of Southampton
Mark T. Weller: University of Bath
Nature Communications, 2012, vol. 3, issue 1, 1-7
Abstract:
Abstract Nanoporous materials have important industrial applications as molecular sieves, catalysts and in gas separation and storage. They are normally produced as moderately dense silicates (SiO2) and aluminosilicates making their specific capacities for the uptake and storage of gases, such as hydrogen, relatively low. Here we report the synthesis and characterization of lightweight, nanoporous structures formed from the metal hydroxide Be(OH)2 in combination with relatively low levels of framework phosphate or arsenate. Three new zeotype structures are described, constructed mainly of Be(OH)4 tetrahedra bridged through hydroxide into three-membered rings; these units link together to produce several previously unknown zeotype cage types and some of the most structurally complex, nanoporous materials ever discovered. These materials have very low densities between 1.12 and 1.37 g cm−3 and theoretical porosities of 63–68% of their total volume thereby yielding very high total specific pore volumes of up to 0.60 cm3 g−1.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms2129 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2129
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2129
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().