Driving diffusionless transformations in colloidal crystals using DNA handshaking
Marie T. Casey,
Raynaldo T. Scarlett,
W. Benjamin Rogers,
Ian Jenkins,
Talid Sinno and
John C. Crocker ()
Additional contact information
Marie T. Casey: University of Pennsylvania
Raynaldo T. Scarlett: University of Pennsylvania
W. Benjamin Rogers: University of Pennsylvania
Ian Jenkins: University of Pennsylvania
Talid Sinno: University of Pennsylvania
John C. Crocker: University of Pennsylvania
Nature Communications, 2012, vol. 3, issue 1, 1-8
Abstract:
Abstract Many crystals, such as those of metals, can transform from one symmetry into another having lower free energy via a diffusionless transformation. Here we create binary colloidal crystals consisting of polymer microspheres, pulled together by DNA bridges, that induce specific, reversible attractions between two species of microspheres. Depending on the relative strength of the different interactions, the suspensions spontaneously form either compositionally ordered crystals with CsCl and CuAu-I symmetries, or disordered, solid solution crystals when slowly cooled. Our observations indicate that the CuAu-I crystals form from CsCl parent crystals by a diffusionless transformation, analogous to the Martensitic transformation of iron. Detailed simulations confirm that CuAu-I is not kinetically accessible by direct nucleation from the fluid, but does have a lower free energy than CsCl. The ease with which such structural transformations occur suggests new ways of creating unique metamaterials having structures that may be otherwise kinetically inaccessible.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms2206 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2206
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2206
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().