On-chip transformation optics for multimode waveguide bends
Lucas H. Gabrielli,
David Liu,
Steven G. Johnson and
Michal Lipson ()
Additional contact information
Lucas H. Gabrielli: School of Electrical and Computer Engineering, Cornell University
David Liu: Massachusets Institute of Technology
Steven G. Johnson: Massachusets Institute of Technology
Michal Lipson: School of Electrical and Computer Engineering, Cornell University
Nature Communications, 2012, vol. 3, issue 1, 1-6
Abstract:
Abstract Current optical communication systems rely almost exclusively on multimode fibres for short- and medium-haul transmissions, and are now expanding into the long-haul arena. Ultra-high bandwidth applications are the main drive for this expansion, based on the ability to spatially multiplex data channels in multimode systems. Integrated photonics, on the other hand, although largely responsible for today’s telecommunications, continues to operate almost strictly in the single-mode regime. This is because multimode waveguides cannot be compactly routed on-chip without significant inter-mode coupling, which impairs their data rate and prevents the use of modal multiplexing. Here we propose a platform for on-chip multimode devices with minimal inter-mode coupling, opening up the possibilities for integrated multimode optics. Our work combines a novel theoretical approach—large-scale inverse design of transformation optics to maximize performance within fabrication constraints—with unique grayscale-lithography fabrication of an exemplary device: a low-crosstalk multimode waveguide bend.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms2232 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2232
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2232
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().