EconPapers    
Economics at your fingertips  
 

Single-particle structure determination by correlations of snapshot X-ray diffraction patterns

D. Starodub (), A. Aquila, S. Bajt, M. Barthelmess, A. Barty, C. Bostedt, J.D. Bozek, N. Coppola, R.B. Doak, S.W. Epp, B. Erk, L. Foucar, L. Gumprecht, C.Y. Hampton, A. Hartmann, R. Hartmann, P. Holl, S. Kassemeyer, N. Kimmel, H. Laksmono, M. Liang, N.D. Loh, L. Lomb, A.V. Martin, K. Nass, C. Reich, D. Rolles, B. Rudek, A. Rudenko, J. Schulz, R.L. Shoeman, R.G. Sierra, H. Soltau, J. Steinbrener, F. Stellato, S. Stern, G. Weidenspointner, M. Frank, J. Ullrich, L. Strüder, I. Schlichting, H.N. Chapman, J.C.H. Spence and M.J. Bogan ()
Additional contact information
D. Starodub: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
A. Aquila: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
S. Bajt: Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
M. Barthelmess: Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
A. Barty: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
C. Bostedt: LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
J.D. Bozek: LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
N. Coppola: European XFEL GmbH, Albert Einstein Ring 19, 22761 Hamburg, Germany
R.B. Doak: Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
S.W. Epp: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
B. Erk: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
L. Foucar: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
L. Gumprecht: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
C.Y. Hampton: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
A. Hartmann: PNSensor GmbH, Romerstrasse 28, 80803 München, Germany
R. Hartmann: PNSensor GmbH, Romerstrasse 28, 80803 München, Germany
P. Holl: PNSensor GmbH, Romerstrasse 28, 80803 München, Germany
S. Kassemeyer: Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
N. Kimmel: Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
H. Laksmono: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
M. Liang: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
N.D. Loh: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
L. Lomb: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
A.V. Martin: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
K. Nass: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
C. Reich: PNSensor GmbH, Romerstrasse 28, 80803 München, Germany
D. Rolles: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
B. Rudek: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
A. Rudenko: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
J. Schulz: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
R.L. Shoeman: Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
R.G. Sierra: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
H. Soltau: PNSensor GmbH, Romerstrasse 28, 80803 München, Germany
J. Steinbrener: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
F. Stellato: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
S. Stern: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
G. Weidenspointner: Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
M. Frank: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
J. Ullrich: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
L. Strüder: Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
I. Schlichting: Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany
H.N. Chapman: Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
J.C.H. Spence: Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
M.J. Bogan: PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

Nature Communications, 2012, vol. 3, issue 1, 1-7

Abstract: Abstract Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms2288 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2288

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2288

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2288