EconPapers    
Economics at your fingertips  
 

Atomic-scale engineering of magnetic anisotropy of nanostructures through interfaces and interlines

S. Ouazi, S. Vlaic, S. Rusponi, G. Moulas, P. Buluschek, K. Halleux, S. Bornemann, S. Mankovsky, J. Minár, J.B. Staunton, H. Ebert and H. Brune ()
Additional contact information
S. Ouazi: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
S. Vlaic: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
S. Rusponi: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
G. Moulas: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
P. Buluschek: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
K. Halleux: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)
S. Bornemann: Ludwig-Maximilians-Universität München
S. Mankovsky: Ludwig-Maximilians-Universität München
J. Minár: Ludwig-Maximilians-Universität München
J.B. Staunton: University of Warwick
H. Ebert: Ludwig-Maximilians-Universität München
H. Brune: Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Nature Communications, 2012, vol. 3, issue 1, 1-9

Abstract: Abstract The central goals of nanoscale magnetic materials science are the self-assembly of the smallest structure exhibiting ferromagnetic hysteresis at room temperature, and the assembly of these structures into the highest density patterns. The focus has been on chemically ordered alloys combining magnetic 3d elements with polarizable 5d elements having high spin–orbit coupling and thus yielding the desired large magneto-crystalline anisotropy. The chemical synthesis of nanoparticles of these alloys yields disordered phases requiring annealing to transform them to the high-anisotropy L10 structure. Despite considerable efforts, so far only part of the nanoparticles can be transformed without coalescence. Here we present an alternative approach to homogeneous alloys, namely the creation of nanostructures with atomically sharp bimetallic interfaces and interlines. They exhibit unexpectedly high magnetization reversal energy with values and directions of the easy magnetization axes strongly depending on chemistry and texture. We find significant deviations from the expected behaviour for commonly used element combinations. Ab-initio calculations reproduce these results and unravel their origin.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms2316 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2316

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2316

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2316