EconPapers    
Economics at your fingertips  
 

Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

Na Lei (), Thibaut Devolder, Guillaume Agnus, Pascal Aubert, Laurent Daniel, Joo- Von Kim, Weisheng Zhao, Theodossis Trypiniotis, Russell P. Cowburn, Claude Chappert, Dafiné Ravelosona and Philippe Lecoeur
Additional contact information
Na Lei: Institut d’Electronique Fondamentale, Université Paris-Sud
Thibaut Devolder: Institut d’Electronique Fondamentale, Université Paris-Sud
Guillaume Agnus: Institut d’Electronique Fondamentale, Université Paris-Sud
Pascal Aubert: Institut d’Electronique Fondamentale, Université Paris-Sud
Laurent Daniel: Laboratoire de Génie Electrique de Paris, CNRS, UMR8507/SUPELEC/UPMC/Univ Paris-Sud
Joo- Von Kim: Institut d’Electronique Fondamentale, Université Paris-Sud
Weisheng Zhao: Institut d’Electronique Fondamentale, Université Paris-Sud
Theodossis Trypiniotis: Cavendish Laboratory, University of Cambridge
Russell P. Cowburn: Cavendish Laboratory, University of Cambridge
Claude Chappert: Institut d’Electronique Fondamentale, Université Paris-Sud
Dafiné Ravelosona: Institut d’Electronique Fondamentale, Université Paris-Sud
Philippe Lecoeur: Institut d’Electronique Fondamentale, Université Paris-Sud

Nature Communications, 2013, vol. 4, issue 1, 1-7

Abstract: Abstract The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms2386 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2386

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2386

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2386