Universal current-velocity relation of skyrmion motion in chiral magnets
Junichi Iwasaki,
Masahito Mochizuki and
Naoto Nagaosa ()
Additional contact information
Junichi Iwasaki: The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku
Masahito Mochizuki: The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku
Naoto Nagaosa: The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku
Nature Communications, 2013, vol. 4, issue 1, 1-8
Abstract:
Abstract Current-driven motion of the magnetic domain wall in ferromagnets is attracting intense attention because of potential applications such as racetrack memory. There, the critical current density to drive the motion is ~109–1012 A m−2. The skyrmions recently discovered in chiral magnets have much smaller critical current density of ~105–106 A m−2, but the microscopic mechanism is not yet explored. Here we present a numerical simulation of Landau–Lifshitz–Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin-transfer-torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. Simulation results are analysed using a theory based on Thiele’s equation, and it is concluded that this behaviour is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal, which enable them to avoid pinning centres.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/ncomms2442 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2442
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2442
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().